Find the cube of (2a−6b)
8a3−216b3−72a2b+216ab2
8a2−216b3−72a2b+216ab2
8a3−216b3−72a3b+216ab2
8a3−216b3−72a2b+216ab3
We know the identity
(a−b)3=a3−b3−3a2b+3ab2
Substituting for the values of a and b
(2a)3−(6b)3−3(2a)2(6b)+3(2a)(6b)2
=8a3−216b3−72a2b+216ab2