Find the cube of :
(i) a+2
(ii) 2a−1
(iii) 2a+3b
(iv) 3b−2a
(v) 2x+1x
(vi) x−12
(i) (a+2)3=(a)3+(2)3+3×a×2(a+2)=a3+8+6a(a+2)=a3+8+6a2+12a=a3+6a2+12a+8.
(ii) (2a−1)3=(2a)3−(1)3−3×2a×1(2a−1)=8a3−1−6a(2a−1)=8a3−1−12a2+6a=8a3−12a2+6a−1.
(iii) (2a+3b)3=(2a)3+(3b)3+3×2a×3b(2a+3b)=8a3+27b3+18ab(2a+3b)=8a3+27b3+36a2b+54ab2=8a3+36a2b+54ab2+27b3.
(iv) (3b−2a)3=(3b)2−(2a)3−3×3b×2a(3b−2a)=27b3−8a3−18ab(3b−2a)=27b3−8a3−54ab2+36a2b=27b3−54b2a+36ba2−8a3.
(v) (2x+1x)3=(2x)3+(1x)3+3×2x×1x(2x+1x)=8x3+1x3+6(2x+1x)=8x3+1x3+12x+6x=8x3+12x+6x+1x3.
(vi) (x−12)3=(x)3−(12)2−3×x×12(x−12)=x3−18−3x2(x−12)=x3−18−3x22+3x4=x3−3x22+3x4−18.