Given Expression is (a−1a+b)
Now, find the cube of (a−1a+b) using the formula (a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2a+3b2c+3c2a+3c2b+6abc
⇒(a−1a+b)3
=a3+(−1a)3+b3+3a2(−1a)+3a2b+3(−1a)2a+3(−1a)2b+3b2a+3b2(−1a)+6a(−1a)b
=a3−1a3+b3−3a+3a2b+3a+3ba2+3b2a−3b2a−6b
Hence, the cube of (a−1a+b) is a3−1a3+b3−3a+3a2b+3a+3ba2+3b2a−3b2a−6b