Find the cubic polynomial in x which attains its maximum value 4 and minimum value 0 at x=−1 and x=1 respectively.
Open in App
Solution
Let the cubic polynomial be y=f(x) f is maximum at x=−1 f is minimum at x=1 dydx=k(x+1)(x−1) dy=k(x2−1)dx ∫dy=∫k(x2−1)dx⇒y=k(x33−x)+c when x=−1, y=4 4=k(−13+1)+c ⇒4=2k3+c ⇒12=2k+3c ...........(1) when x=1, y=0 0=k(13−1)+c ⇒0=2k3+c 0=−2k+3c .........(2) 12=2k+3c ..........(1) ............................ 12=6c ⇒c=2 Substitute c=2 in (1), 12=2k+6 ⇒2k+6 ⇒k=3 The required polynomial is =3(x33−x)+2