The correct option is
A E=μ(→v1−→v2)22Here, two particles travel along the x axis in the reference frame K, one of mass m1 with velocity →v1, and the other of mass m2 with velocity
→v2.
Let, →v be the velocity of the reference frame K' and E1 and E2 be the kinetic energies for particles in this frame.
E1=12m1(→v−→v1)2 and E2=12m2(→v−→v2)2
Now, E=E1+E2
E=12m1(→v−→v1)2+12m2(→v−→v2)2...(1)
E=12[m1→v2−2m1v→v1+m1→v12+m2→v2−2m2v→v2+m2→v22]
E=12[→v2(m1+m2)−2→v(m1→v1+m2→v2)+m1→v12+m2→v22
Differentiating with respect to v we get
dEdv=12[2→v(m1+m2)−2(m1→v1+m2→v2)]
Since, reference frame K′ is moving with respect to frame K and the cumulative kinetic energy of two particles is minimum there hence,
dEdv=0
12[2→v(m1+m2)−2(m1→v1+m2→v2)]=0
→v(m1+m2)=m1→v1+m2→v2
→v=m1→v1+m2→v2m1+m2....(2)
Using equation (2) in equation (1), we get
E=12m1(m1→v1+m2→v2m1+m2−→v1)2+12m2(m1→v1+m2→v2m1+m2−→v2)2
E=12m1(m1→v1+m2→v2−m1→v1−m2→v1m1+m2)2+12m2(m1→v1+m2→v2−m1→v2−m2→v2m1+m2)2
E=12m1m22((→v2−→v1)2(m1+m2)2)+12m2m21((→v1−→v2)2(m1+m2)2
E=12(→v1−→v2)2(m1+m2)2m1m2(m1+m2)
E=12(→v1−→v2)2(m1+m2)m1m2
E=μ(→v1−→v2)22
where, μ=m1m2m1+m2