The correct option is B 0.090909....
Given fraction is 111.
111 = 111 × 100100
= (10011) × 1100
= (9111) × 1100
= (9+111) × 1100
= 9100 + 11100.......(1)
Now, 11100 = 111×100
= (111) × 1100.......(2)
From (1), 111 = 9100 + 11100; substitute it in eq (2).
⇒ 11100 = (9100 + 11100) × 1100
= 910000 + 1110000
Now substituting this value in eq(1), we get
111 = 9100 + (910000 + 1110000)
= (9100 + 910000) + 1110000
Similarly finding the value of 1110000=(111×110000)
and on solving that will give 91000000 + 111000000
⇒ 111 = 9100 + 910000 + (91000000 + 111000000)
This cycle will continue and leads to 111 = 9100 + 910000 + 91000000 + ........
= 0.09 + 0.0009 + 0.000009 + .....
∴ 111 = 0.090909.....