Find the degree measure corresponding to the following radian measures (Use π=227):
(i) 9π5
(ii) −5π6
(iii) (180π5)c
(iv) (−3)c
(v) 11c
(vi) 1c
(i) 9π5
We have,
π radians = 180∘
1c={180π}∘
Now,
(9π5×180π)∘=324∘
(ii) −5π6
We hve,
π radians = 180∘
Now,
(−5π6)c=(−5π6×180π)∘=−150∘
(iii) (180π5)c
We have,
π radians = 180∘
1c=(180π)∘
Now,
(18π5)c=(18π5×180π)∘=648∘
(iv) (−3)c
We have,
π radians = 180∘
1c=(180π)∘
Now,
(−3)c=(−3×180π)∘=(18022×7×−3)∘=(−171911)∘=−171∘(911×60)=−171∘49 ′5"
(v) 11c
We have,
π radians = 180∘
1c=(180π)∘Now, (11)c=(11×180π)∘=(11×180×722)∘=630∘
(vi) 1c
We have,
π radians = 180∘
1c=(180π)∘
Now,
1c=(1×180π)∘=1×180×722=57∘(311×60)=57∘16′(411×60)=57∘16 ′21"