Given : f(x)=3x
We know that,
⇒f′(x)=limh→0f(x+h)−f(x)h
⇒f′(x)=limh→03(x+h)−3(x)h
Putting x=2
⇒f′(2)=limh→03(2+h)−3(2)h
⇒f′(2)=limh→06+3h−6h
⇒f′(2)=limh→03h+0h
⇒f′(2)=limh→03hh
⇒f′(2)=limh→03
⇒f′(2)=3
Hence the derivative of the function f(x) at x=2 is 3.