Find the derivative of (ax+b)(cx+d)2 where a,b,c,d are fixed non-zero constants.
Open in App
Solution
Let f(x)=(ax+b)(cx+d)2 ⇒f(x)=(ax+b)(c2x2+2cdx+d2)
Differentiating with respect to x. ⇒f′(x)=(c2x2+2cdx+d2)ddx(ax+b)+(ax+b)ddx(c2x2+2cdx+d2) ⇒f′(x)=(c2x2+2cdx+d2)×a+(ax+b)×(2c2x+2cd) ⇒f′(x)=a(cx+d)2+(ax+b)×2c(cx+d) ∴f′(x)=a(cx+d)2+2c(cx+d)(ax+b)