Method 1:
Calculating derivative for pn
Let f(x)=pn where p be a function in x.
For n=1
f′(x)=p′
For n=2
f′(x)=(p2)′=(p⋅p)′=p′p+pp′=2pp′
For n=3
f′(x)=(p3)′=(p⋅p2)′=p(p2)′+p′p2
⇒f′(x)=p(2pp′)+p′p2=2p2p′+p2p′
⇒f′(x)=3p2p′
Similarly, for n=n
⇒f′(x)=npn−1p′
Required derivative
Let g(x)=(ax+b)n
Differentiating with respect to x
⇒g′(x)=((ax+b)n)′
From above formula, we get
⇒g′(x)=n(ax+b)n−1(ax+b)′
⇒g′(x)=n(ax+b)n−1(a)
∴g′(x)=na(ax+b)n−1
Method 2:
Let g(x)=(ax+b)n
Using Chain Rule, we get
⇒g′(x)=n(ax+b)n−1(ax+b)′
∴g′(x)=na(ax+b)n−1