wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of cos2x, by using first principle of derivatives.

Open in App
Solution

y=cos2x .......(1)

Increase from y to y+δy correspondingly x to x+δx in the above equation(1)

y+δy=cos2(x+δx) .....(2)

Eqn(2)-Eqn(1)

y+δyy=cos2(x+δx)cos2x

δy=cos2(x+δx)cos2x

Divide both sides by δx we get

δyδx=cos2(x+δx)cos2xδx

δyδx=sin(2x+δx)sinδxδx by using cos2Bcos2A=sin(A+B)sin(AB)

limx0δyδx=limx0sin(2x+δx)sinδxδx

dydx=limx0sin(2x+δx)sinδxδx

dydx=sin(2x+0)×1 since limx0sinδxδx=1

dydx=sin2x=2cosxsinx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon