wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of cos2x, by using first principle of derivatives.
1227860_0461f42ba1d243fa9f8e7a1dbb26eae8.JPG

Open in App
Solution

Increase from y to y+δy correspondingly x to x+δx in the above equation(1)
y+δy=cos2(x+δx) .....(2)
Eqn(2)-Eqn(1)
y+δyy=cos2(x+δx)cos2x
δy=cos2(x+δx)cos2x
Divide both sides by δx we get
δyδx=cos2(x+δx)cos2xδx
δyδx=sin(2x+δx)sinδxδx by using cos2Bcos2A=sin(A+B)sin(AB)
limx0δyδx=limx0sin(2x+δx)sinδxδx
dydx=limx0sin(2x+δx)sinδxδx
dydx=sin(2x+0)×1$since$limx0sinδxδx=1
dydx=sin2x=2cosxsinx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon