Let f(x)=a+bsinxc+dcosx
Differentiating with respect to x
⇒f′(x)=ddx(a+bsinxc+dcosx)
⇒f′(x)=(c+dcosx)ddx(a+bsinx)−(a+bsinx)ddx(c+dcosx)(c+dcosx)2
⇒f′(x)=[(c+dcosx)(bcosx)−(a+bsinx)(−dsinx)](c+dcosx)2
⇒f′(x)=[bccosx+bdcos2x+adsinx+bdsin2x](c+dcosx)2
⇒f′(x)=bccosx+adsinx+bd(cos2x+sin2x)(c+dcosx)2
∴f′(x)=bccosx+adsinx+db(c+dcosx)2
[∵cos2x+sin2x=1]