Find the derivative of ax4−bx2+cosx where a,b are fixed non-zero constants.
Open in App
Solution
Let f(x)=ax4−bx2+cosx ⇒f(x)=ax−4−bx−2+cosx
Differentiating with respect to x ⇒f′(x)=ddx(ax−4−bx−2+cosx) ⇒f′(x)=ddx(ax−4)−ddx(bx−2)+ddx(cosx) ⇒f′(x)=a⋅(−4)x−4−1−b⋅(−2)x−2−1+(−sinx) ⇒f′(x)=−4ax−5+2bx−3−sinx ∴f′(x)=−4ax5+2bx3−sinx