Find the derivative of ax+bcx+d where a,b,c,d are fixed non-zero constants.
Open in App
Solution
Let f(x)=ax+bcx+d
Differentiating with respect to x ⇒f′(x)=[(cx+d)ddx(ax+b)−(ax+b)ddx(cx+d)](cx+d)2 ⇒f′(x)=a(cx+d)−c(ax+b)(cx+d)2 ⇒f′(x)=acx+ad−acx−bc(cx+d)2 ∴f′(x)=ad−bc(cx+d)2