Find the derivative of ax+bpx2+qx+r where p,q,r,a,b are fixed non-zero constants.
Open in App
Solution
Let f(x)=ax+bpx2+qx+r
Differentiating with respect to x ⇒f′(x)=[(px2+qx+r)ddx(ax+b)−(ax+b)ddx(px2+qx+r)](px2+qx+r)2 ⇒f′(x)=a(px2+qx+r)−(2px+q)(ax+b)(px2+qx+r)2 ⇒f′(x)=apx2+aqx+ar−2px(ax+b)−q(ax+b)(px2+qx+r)2 ⇒f′(x)=apx2+aqx+ar−2apx2−2pbx−aqx−qb(px2+qx+r)2 ⇒f′(x)=apx2−2apx2+aqx−aqx−2pbx−qb+ar(px2+qx+r)2 ⇒f′(x)=−apx2−2pbx−qb+ar(px2+qx+r)2 ⇒f′(x)=−apx2−2pbx+ar−bq(px2+qx+r)2