Let f(x)=secx−1secx+1
Differentiating with respect to x
⇒f′(x)=ddx(secx−1secx+1)
⇒f′(x)=(secx+1)ddx(secx−1)−(secx−1)ddx(secx+1)(secx+1)2
⇒f′(x)=[(secx+1)(secxtanx)−(secx−1)(secxtanx)](secx+1)2
⇒f′(x)=secxtanx[(secx+1)−(secx−1)](secx+1)2
⇒f′(x)=2secxtanx(secx+1)2
∴f′(x)=2secxtanx(secx+1)2