Let f(x)=sin(x+a)cosx
Differentiating with respect to x
⇒f′(x)=ddx(sin(x+a)cosx)
⇒f′(x)=[(cosx)ddx(sin(x+a))−sin(x+a)ddxcosx](cosx)2
⇒f′(x)=(cosx)(cos(x+a))−(sin(x+a))(−sinx)(cosx)2
⇒f′(x)=cos(x+a)cosx+sin(x+a)sinx(cos x)2
⇒f′(x)=cos[(x+a)−x](cosx)2
[∵cos(A−B)=cosAcosB+sinAsinB]
⇒f′(x)=cos(x+a−x)cos2x
∴f′(x)=cosacos2x