wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of sinx+cosxsinxcosx

Open in App
Solution

Let f(x)=sinx+cosxsinxcosx
Differentiating with respect to x
f(x)=ddx(sinx+cosxsinxcosx)
f(x)=(sinxcosx)ddx(sinx+cosx)(sinx+cosx)ddx(sinxcosx)(sinxcosx)2
f(x)=(cosxsinx)(sinxcosx)(cosx+sin x)(sinx+cosx)(sinxcosx)2
f(x)=(sinxcosx)(sinxcosx)(sinx+cosx)(sinx+cosx)(sinxcosx)2
f(x)=(sinxcosx)2(sinx+cosx)2(sinxcosx)2
f(x)=[(sin2x+cos2x2sinxcosx)+(sin2x+cos2x+2sinxcosx)](sinxcosx)2
f(x)=(2sin2x+2cos2x+0)(sinxcosx)2
f(x)=2(sin2x+cos2x)(sinxcosx)2
f(x)=2(1)(sinxcosx)2
f(x)=2(sinxcosx)2


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon