Find the derivative of f(x) = cos x at x = 0
We have,
f(x)=cos x
∵ f′(a)=limh→0f(a+h)−f(a)h
∵ f′(0)=limh→0f(0+h)−f(0)h
=limh→0cos(0+h)−cos 0h
=limh→0cos h−cos 0h
=limh→0(1−h22!+h44!−...)−1h
[∵ cos x=1−x22!+x44!−....]
=limh→0h(−h2!+h34!−h56!)h
=limh→ 0h(−h2!+h34!−h56!−....)
=0
∴ f′(0)