wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of f(x) from the first principles, where f(x) is
sinx+cosx

Open in App
Solution

f(x)=sinx+cosx
We know,
f(x)=limh0f(x+h)f(x)h

Now, f(x+h)=sin(x+h)+cos(x+h)
Therefore,
f(x)=limh0sin(x+h)+cos(x+h)(sinx+cosx)h

=limh0sinxcosh+cosxsinh+cosxcoshsinxsinhsinxcosxh

=limh0sinh(cosxsinx)+sinx(cosh1)+cosx(cosh1)h

=limh0sinh(cosxsinx)h+limh0sinx(cosh1)h+limh0cosx(cosh1)h

=(cosxsinx)limh0sinhhsinxlimh01coshhcosxlimh01coshh

=cosxsinx00
=cosxsinx
Hence, f(x)=cosxsinx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon