wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of f(x)=tan1(2x1x2) w.r.t. g(x)=sin1(2x1+x2).

Open in App
Solution

f(x)=tan1(2x1x2).g(x)=sin1(2x1+x2)
Let, x=tanθ,θ=tan1x
f(tanθ)tan1(2tanθ1tan2θ)=tan1(tan2θ)
=2θ
f(x)=2tan1x
df(x)dx=21+x2
Now, g(tanθ)=sin1(2tanθ1+tan2θ)
=2θ
g(x)=2tan1x
dg(x)dx=21+x2
df(x)dg(x)=df(x)dx×dxdg(x)
=21+x2×1+x22
=1

1078519_1071285_ans_84ce7e38c58c4c10a9c79b38ec8a7934.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative from First Principles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon