Find the derivative of xn−anx−a for some constant a.
Here f(x) = xn−anx−a
∴ f'(x) =ddx[xn−anx−a]
= (x−a)ddx(xn−an)−(xn−an)ddx(x−a)(x−a)2
= (x−a)×nxn−1−(xn−an)×1(x−a)2
= nx2−anxn−1−xn+an(x−a)2
Find the derivative of xn+axn−1+a2xn−2+...+an−1x+an for some fixed real number a.