Find the derivative of:
(i) 2x - 34
(ii) (5x3+3x−1) (x-1)
(iii) x−3 (5+3x)
(iv) x5(3−6x−9)
(v) x−4(3−4x−5)
(vi) 2x+1−x23x−1
(i) Here f(x) = 2x - 34
∴ f'(x) = ddx(2x−34)
= 2ddx(x)−ddx(34)
= 2 × 1 - 0 = 2.
(ii) Here f(x) = (5x3+3x−1) (x-1)
∴ f'(x) = ddx[(5x3+3x−1)(x−1)]
= (5x3+3x−1)ddx(x−1)+(x−1)ddx(5x3+3x−1)
= (5x3+3x−1)×1+(x−1)(15x2+3)
= 5x3+3x−1+15x3+3x−15x2−3
= 20x3−15x2+6x−4.
(iii) Here f(x)=x−3(5+3x)
f′(x) = x−3×3+(5+3x)×−3x−4
= 3x3−3x4(5+3x)
= 3x3[1−5+3xx]=3x3[x−5−3xx]
= −3x4(5+2x).
(iv) Here f(x) = x5(3−6x−9)
∴ f'(x) = ddx[x5(3−6x−9)]
= x5ddx(3−6x−9)+(3−6x−9)ddx(x5)
= x5(54x−10)+(3−6x−9)×5x4
=54x−5+15x4−30x−5
= 24x−5+15x4.
(v) Here f(x) =x−4(3−4x−5)
∴ f'(x) = ddx[x−4(3−4x−5)]
= x−4ddx(3−4x−5)+(3−4x−5)ddx(x−4)
= x−4(20x−6)+(3−4x−5)(−4x−5)
= 20x−10−12x−5+16x−10
= 36x−10−12x−5=36x10−12x5.
(vi) Here f(x) = 2x+1−x23x−1
∴ f'(x) = ddx[2x+1−x23x−1]
= ddx(2x+1)−ddx(x23x−1)
= (x+1)ddx(2)−2ddx(x+1)(x+1)2 - (3x−1)ddx(x2)−x2ddx(3x−1)(3x−1)2
= ((x+1)×0−2×1)−((3x−1)(2x)−x2×3)(x+1)2(3x−1)2
= −2(x+1)2−3x2−2x(3x−1)2.