Find the derivative of [ln(tanx)]2.
Find the required derivative.
Given function: [ln(tanx)]2.
Differentiating with respect to x, we get,
ddx[ln(tanx)]2=2ln(tanx)ddxln(tanx)∵ddxfxn=nfxn-1ddxfx=2ln(tanx)×1tanx×sec2x∵ddxlnfx=1fxddxfx=2ln(tanx)×cosxsinx×1cosx2=2ln(tanx)×1sinx×1cosx=2ln(tanx)cosecxsecx
Hence, the derivative of [ln(tanx)]2is 2ln(tanx)cosecxsecx.
Find the derivative of sin(x2)+(sin x)2+sin2(x2)