We have,
y=sin2x
On differentiation and we get,
dydx=cos2x(2)
dydx=2cos2x
At the point x=π3
dydx=2cos(2π3)
dydx=2cos(π−π3)
dydx=−2cosπ3
dydx=−2×12
dydx=−1
Hence, this is the answer
Find the derivative of the following functions at the indicated points :
(i) sin x at x=π2
(ii) x at x=1
(iii) 2 cos x at x=π2
(iv) sin 2x at x=π2