Let f(x)=sin(x+a)
Using sin(A+B)=sinAcosB+cosAsinB
f(x)=sinx⋅cosa+cosx⋅sina
Differentiating with respect to x
⇒f′(x)=ddx(sinx⋅cosa+cosx⋅sina)
⇒f′(x)=cosaddx(sinx)+sinaddx(cosx)
⇒f′(x)=cosacosx+sina(−sinx)
⇒f′(x)=cosacosx−sinasinx
Using cos(A+B)=cosAcosB−sinAsinB
∴f′(x)=cos(x+a)