wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of (sinx)cos1x with respect to x.

Open in App
Solution

y=(sinx)cos1x
Taking log on both sides
logy=cos1x.log(sinx)
Differentiating w.r.t x,
1y(dydx)=cos1x.ddx[log(sinx)]+log(sinx)ddx(cos1x)
=cos1x.[1sinx.cosx]+log(sinx).[11x2]
1y(dydx)=cos1x.cotx+log(sinx)[11x2]
[ddx(logx)=1xddxcos1x=11x2]
dydx=y[cos1x.cotx+log(sinx).[11x2]]
dydx=(sinx)cos1x[cos1x.cotxlog(sinx)1x2]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon