wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of tanx w.r.t. x., using first principle

Open in App
Solution

tanx
Using first principle,
f(x)=tanx
f(x)=limh0[f(x+h)f(x)]/h
=limh0[tan(x+h)tanx]/h
=limh0[{sin(x+h)/cos(x+h)}{sin2cos2}/h
=limh0[sinx+hx]/cosx+h.cosx/h
=limh0{[sinx(1+1/2.h/x+(1/2)(1/21)(h/x)]2+.....1]}/hcosx+h.cosx.
=limh0[sin{h/2x+ terms containing higher powers of h/x]/(h/2x).2x.cosx+h)cosx
=limh0[sin(h/2x)+ terms containing higher powers of h/x)/hx.22.(cosx+h).cosx]
=1/(2x.cos2x)+C
=(sec2x)(2x)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon