wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of (tanx+secx)(cotx+cosecx)

Open in App
Solution

Let y = tan x + sec xcot x + cosec xdydx = tan x + sec x × ddxcot x + cosec x +cot x + cosec x ×ddxtan x + sec x dydx = tan x + sec x- cosec2x-cot x . cosec x + cot x + cosec xsec2x + sec x . tan xdydx = - tan x . cosec2x - tan x . cot x . cosec x - sec x . cosec2x - sec x . cot x . cosec x + cot x . sec2x + sec x + cosec x . sec2x + sec x . tan x . cosec xdydx = -1sin x . cos x - 1sin x - sec x . cosec2x - cosec2x + 1sin x . cos x + sec x + cosec x . sec2x + sec2xdydx = -cosec x - sec x . cosec2x - cosec2x + sec x + cosec x . sec2x + sec2x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Values of Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon