i) f(x)=x3−16
f1(x)=limh→0[(x+h)3−16]−(x3−16)h
=limh→03x2h−3hx2h
=3x2
ii) f(x)=x2−3x+2
f1(x)=limh→0[(x2+h)2−3(x+h)+2]−(x2−3x+2)h
=limh→0h2+2xh−3hh
=2x−3
iii) f(x)=1/x2
f1(x)=limh→01(x+h)2−1x2h
=limh→0x2−x2−h2−2xhh(x+h)2x2
=−2x3
iv) f(x)=(x+1)/(x−1)
f1(x)=limh→0x+h+1x+h−1−x+1x−1h
=limh→0(x+h+1)(x−1)−(x+1)(x+h−1)h(x+h−1)(x−1)
=−2(x−1)2