Find the derivative of the following functions at the indicated points :
(i) sin x at x=π2
(ii) x at x=1
(iii) 2 cos x at x=π2
(iv) sin 2x at x=π2
(i) We have,
f(x) = sin x
∵ f′(a)=limh→0f(a+h)−f(a)h
=f′(π2)=limh→0f(π2+h)−f(π2)h
=limh→0f(π2+h)−sin(π2)h
=limh→0cos h−1h
=limh→0(1−h22!+h44!−.....)−1h
[∵ cos x=1−x22!+x44!−....]
=limh→0(−h2!+h34!−h56!+......)h
=limh→0 h(−h2!+h34!−h56!+....)
=0
∴ f′(π2)=1
(ii) We have
∵ f′(a)=limh→0f(a+h)−f(a)h
∵ f′(1)=limh→0f(1+h)−f(1)h
=limh→01+h−1h
=limh→01
∴ f′(1)=1
(iii) We have
f(x)=2 cos x
∵ f′(a)=limh→0f(a+h)−f(a)h
=limh→0f(π2+h)−f(π2)h
=limh→02cos(π2+h)−2 cos (π2)h
=limh→0−2sin h−0h
=−2 [∵ limθ→0sinθθ=1]
∴ f′(π2)=−2
(iv) We have
f(x)= sin 2x
Therefore,
f′(a)=limh→0f(a+h)−f(a)h=limh→0f(π2+h)−f(π2)h
=limh→0sin 2(π2+h)−sin 2(π2)h
=limh→0sin(π2×2+2h)−sin(π)h
=limh→0−cos 2h−0h
=−2
Therefore f′(π2)=−2