(i) Let f(x)=x3−27
We know that f′(x)=limh→0f(x+h)−f(x)h
⇒f′(x)=limh→0((x+h)3−27)−(x3−27)h
⇒f′(x)=limh→0(x+h)3−x3−27+27h
⇒f′(x)=limh→0(x+h)3−x3h
⇒f′(x)=limh→0x3+h3+3x2h+3xh2−x3h
⇒f′(x)=limh→0h(h2+3x2+3xh)h
⇒f′(x)=limh→0h2+3x2+3xh
Putting h=0
⇒f′(x)=(0)2+3x2+3x(0)
⇒f′(x)=0+3x2+0
⇒f′(x)=3x2
Hence, f′(x)=3x2
(ii) Let f(x)=(x−1)(x−2)
⇒f(x)=x(x−2)−1(x−2)
⇒f(x)=x2−2x−x+2
⇒f(x)=x2−3x+2
We know that f′(x)=limh→0f(x+h)−f(x)h
⇒f′(x)=limh→0[(x+h)2−3(x+h)+2]−(x2−3x+2)h
⇒f′(x)=limh→0(x+h)2−3x−3h+2−x2+3x−2h
⇒f′(x)=limh→0(x+h)2−x2−3hh
⇒f′(x)=limh→0x2+h2+2xh−x2−3hh
⇒f′(x)=limh→0h(h+2x−3)h
putting h=0
⇒f′(x)=limh→00+2x−3
⇒f′(x)=0+2x−3
⇒f′(x)=2x−3
Hence,f′(x)=2x−3
(iii)Let f(x)=1x2
We know that f′(x)=limh→0f(x+h)−f(x)h
⇒f′(x)=limh→01(x+h)2−1x2h
⇒f′(x)=limh→0x2−(x+h)2(x+h)2x2h
⇒f′(x)=limh→0x2−(x+h)2hx2(x+h)2
⇒f′(x)=limh→0(x−(x+h))(x+(x+h))hx2(x+h)2
⇒f′(x)=limh→0(x−x−h)(x+x+h)h.x2(x+h)2
⇒f′(x)=limh→0(−h)(2x+h)hx2(x+h)2
⇒f′(x)=limh→0(−1)(2x+h)x2(x+h)2
Putting h=0
⇒f′(x)=(−1)(2x+0)x2(x+0)2
⇒f′(x)=(−1)2xx2(x)2
⇒f′(x)==−2xx4
⇒f′(x)==−2x3
Thus, f′(x)=−2x3
(iv) Let f(x)=x+1x−1
We know that f′(x)=limh→0f(x+h)−f(x)h
⇒f′(x)=limh→0([(x+h)+1(x+h)−1]−[x+1x−1])h
⇒f′(x)=limh→0x+h+1x+h−1−x+1x−1h
=limh→0(x−1)(x+h+1)−(x+1)(x+h−1)h(x+h−1)(x−1)h
=limh→0(x−1)((x+1)+h)−(x+1)((x−1)+h))h(x+h−1)(x−1)
=limh→0(x−1)(x+1)+(x−1)h−(x+1)(x−1)−(x+1)hh(x+h−1)(x−1)
=limh→0(x2−1)+xh−h−(x2−1)−xh−hh(x+h−1)(x−1)
=limh→0−2hh(x+h−1)(x−1)
=limh→0−2(x+h−1)(x−1)
⇒f′(x)=limh→0−2(x+h−1)(x−1)
putting h=0
⇒f′(x)=−2(x+0−1)(x−1)
⇒f′(x)=−2(x−1)(x−1)
⇒f′(x)=limh→0−2(x−1)2
Hence, f′(x)=−2(x−1)2