wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of the following functions from first principle.
(i) x327
(ii) (x1)(x2)
(iii) 1x2
(iv) x+1x1

Open in App
Solution

(i) Let f(x)=x327
We know that f(x)=limh0f(x+h)f(x)h
f(x)=limh0((x+h)327)(x327)h
f(x)=limh0(x+h)3x327+27h
f(x)=limh0(x+h)3x3h
f(x)=limh0x3+h3+3x2h+3xh2x3h
f(x)=limh0h(h2+3x2+3xh)h
f(x)=limh0h2+3x2+3xh

Putting h=0
f(x)=(0)2+3x2+3x(0)
f(x)=0+3x2+0
f(x)=3x2
Hence, f(x)=3x2

(ii) Let f(x)=(x1)(x2)
f(x)=x(x2)1(x2)
f(x)=x22xx+2
f(x)=x23x+2
We know that f(x)=limh0f(x+h)f(x)h
f(x)=limh0[(x+h)23(x+h)+2](x23x+2)h
f(x)=limh0(x+h)23x3h+2x2+3x2h
f(x)=limh0(x+h)2x23hh
f(x)=limh0x2+h2+2xhx23hh
f(x)=limh0h(h+2x3)h

putting h=0
f(x)=limh00+2x3
f(x)=0+2x3
f(x)=2x3
Hence,f(x)=2x3

(iii)Let f(x)=1x2
We know that f(x)=limh0f(x+h)f(x)h
f(x)=limh01(x+h)21x2h
f(x)=limh0x2(x+h)2(x+h)2x2h
f(x)=limh0x2(x+h)2hx2(x+h)2
f(x)=limh0(x(x+h))(x+(x+h))hx2(x+h)2
f(x)=limh0(xxh)(x+x+h)h.x2(x+h)2
f(x)=limh0(h)(2x+h)hx2(x+h)2
f(x)=limh0(1)(2x+h)x2(x+h)2
Putting h=0
f(x)=(1)(2x+0)x2(x+0)2
f(x)=(1)2xx2(x)2
f(x)==2xx4
f(x)==2x3
Thus, f(x)=2x3

(iv) Let f(x)=x+1x1
We know that f(x)=limh0f(x+h)f(x)h
f(x)=limh0([(x+h)+1(x+h)1][x+1x1])h
f(x)=limh0x+h+1x+h1x+1x1h
=limh0(x1)(x+h+1)(x+1)(x+h1)h(x+h1)(x1)h
=limh0(x1)((x+1)+h)(x+1)((x1)+h))h(x+h1)(x1)
=limh0(x1)(x+1)+(x1)h(x+1)(x1)(x+1)hh(x+h1)(x1)
=limh0(x21)+xhh(x21)xhhh(x+h1)(x1)
=limh02hh(x+h1)(x1)
=limh02(x+h1)(x1)
f(x)=limh02(x+h1)(x1)

putting h=0
f(x)=2(x+01)(x1)
f(x)=2(x1)(x1)
f(x)=limh02(x1)2
Hence, f(x)=2(x1)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon