(i) Here f(x)= -x
Then f(x+h)= -(x+h)
We know that:
f′(x)=limh→0f(x+h)−f(x)h
⇒f′(x)=limh→0−(x+h)−(−x)h
=limh→0−x−h+xh
=limh→0−hh=−1
(ii) Here f(x)= (−x)−1=−1x
Then f(x+h)=−1x+h
We know that:
f′(x)=limh→0−1x+h−f(x)h
=limh→0−x+x+hhx(x+h)
=limh→0hhx(x+h)=1x2
(iii) Here f(x)= sin (x+1)
Then f(x+h)= sin (x+h+1)
We know that
f′(x)=limh→0f(x+h)−f(x)h
⇒f′(x)=limh→0sin(x+h+1)−sin(x+1)h
=limh→02cos (2x+h+22) sin (h2)h
=limh→0cos(x+1+h2) sin(h2)(h2)
=cos (x+1)
(iv) Here f(x)=cos(x−π8)
Then f(x+h)=cos(x+h−π8)
We know that
f′(x)=limh→0f(x+h)−f(x)h
⇒f′(x)=limh→0cos(x+h−π8)−cos(x−π8)h
=limh→0−2sin(x−π8+h2) sin(h2)h
=limh→0−sin(x−π8+h2).sin(h2)(h2)
=−sin(x−π8).