Applying the first principle to find the derivative of sec3x.
limh→0sec3(x+h)−sec3xh
=limh→01cos3(x+h)−1cos3xh
=limh→0cos3x−cos3(x+h)hcos3xcos3(x+h)
=limh→0cos3x−(cos3xcos3h−sin3xsin3h)hcos3xcos3(x+h)
=limh→0cos3x(1−cos3h)+sin3xsin3hhcos3xcos3(x+h)
=limh→0cos3x(1−cos3h)hcos3xcos3(x+h)+limh→0sin3xsin3hhcos3xcos3(x+h)
=limh→0(1−cos3h)hcos3(x+h)+sin3xcos3x×limh→0sin3hh×limh→01cos3(x+h)
=0+sin3xcos3x×3×1cos3x
=3tan3xsec3x