Applying the first principle to find the derivative of cos2x.
limh→0cos2(x+h)−cos2xh
=limh→0(cos(x+h)−cosx)(cos(x+h)+cosx)h
=limh→0(2sin(x+h+x2)sin(x+h−x2))(2cos(x+h+x2)cos(x+h−x2))h
=limh→04sin(2x+h2)sin(h2)cos(2x+h2)cos(h2)h
=limh→04sin(2x+h2)×limh→0cos(2x+h2)×limh→0cos(h2)×limh→0sin(h2)h
=limh→04sin(2x+h2)×limh→0cos(2x+h2)×limh→0cos(h2)×limh→0sin(h2)2h2
=limh→04sin(2x+02)×limh→0cos(2x+02)×limh→0cos(0)×limh→012×sin(h2)h2
=4sinx×cosx×1×12
=2sinxcosx
=sin2x