(i) Here f(x) = sin x cos x
∴f′(x)=ddx(sin x cos x)
=sin x ddx(cos x)+cos x ddx(sin x)
=sin x×(−sin x)+cos x×cos x
=cos2x−sin2x=cos 2x
(ii) Here f(x) = sec x
∴f′(x)=ddx(sec x)=sec x tan x
(iii) Here f(x)=5 sec x+4 cos x
∴f′(x)=ddx(5 sec x+4 cos x)
=5ddx (sec x)+4ddx(cos x)
=5 sec x tan x−4 sin x
(iv) Here f(x)=coesc x
∴f′(x)=ddx(cosec x)=−cosec x cot x.
(v) Here f(x)=3 cot x+5 cosec x
∴f′(x)=ddx[3 cot x+5 cosec x]
=3ddx(cot x)+5ddx(cosec x)
=−3cosec2 x−5 cosec x cot x.
(vi) Here f(x)=5 sin x−6 cos x+7
∴f′(x)=ddx[5 sin x−6 cos x+7]
=5ddx(sin x)−6ddx(cos x)+ddx(7)
=5 cos x+6 sin x+0
=5 cos x+6 sin x
(vii) Here f(x) = 2 tan x−7 sec x
∴f′(x)=ddx[2 tan x−7 sec x]
=2ddx(tan x)−7ddx(sec x)
=2sec2x−7 sec x tan x