Find the derivative of the following functions (it is to be understood that a,b,c,d,p,q,r and s are fixed non-zero constants and m and n are integers) : secx−1secx+1
Open in App
Solution
Let f(x)=secx−1secx+1 =1cosx−11cosx+1=1−cosx1+cosx Thus using quotient rule f′(x)=(1+cosx)ddx(1−cosx)−(1−cosx)ddx(1+cosx)(1+cosx)2 =(1+cosx)(sinx)−(1−cosx)(−sinx)(1+cosx)2 = sinx+cosxsinx+sinx−sinxcosx(1+cosx)2 =2sinx(1+1secx)2=2sinx(secx+1)2sec2x = 2sinxsec2x(secx+1)2=2sinxcosxsecx(secx+1)2=2secxtanx(secx+1)2