Find the derivative of the following functions (it is to be understood that a,b,c,d,p,q,r,sand s are fixed non-zero constants and m and n are integers) : x4(5sinx−3cosx)
Open in App
Solution
Let f(x)=x2(5sinx−3cosx) Thus by product rule f′(x)=x4ddx(5sinx−3cosx)+(5sinx−3cosx)ddx(x4) = x4[5ddx(sinx)−3ddx(cosx)]+(5sinx−3cosx)ddx(x4) = x4[5cosx−3(−sinx)]+(5sinx−3cosx)(4x3) = x3[5xcosx+3xsinx+20sinx−12cosx]