The given equation is f(x)=(1+x)(1+x2)(1+x4)(1+x8)
Taking logarithm on both the sides, we obtain
logf(x)=log(1+x)+log(1+x2)+log(1+x4)+log(1+x8)
Differentiating both sides with respect to x, we obtain
1f(x).ddx[f(x)]=ddxlog(1+x)+ddxlog(1+x2)+ddxlog(1+x4)+ddxlog(1+x8)
⇒1f(x).f′(x)=11+x.ddx(1+x)+11+x2.ddx(1+x2)+11+x4.ddx(1+x4)+11+x8.ddx(1+x8)
⇒f′(x)=f(x)[11+x+11+x2.2x+11+x4.4x3+11+x8.8x7]
∴f′(x)=(1+x)(1+x2)(1+x4)(1+x8)[11+x+2x1+x2+4x31+x4+8x71+x8]
Hence, f′(1)=(1+1)(1+12)(1+14)(1+18)[11+1+2×11+12+4×131+14+8×171+18]
=2×2×2×2[12+22+42+82]
=16×(1+2+4+82)
=16×152=120