Let f(x)=x4(5sinx−3cosx)
Differentiating with respect to x
⇒f′(x)=ddx(x4(5sinx−3cosx))
⇒f′(x)=(5sinx−3cosx)ddx(x4)+(x4)ddx(5sinx−3cosx)
⇒f′(x)=4x3(5sinx−3cosx)+(x4)(ddx(5sinx)−ddx(3cosx))
⇒f′(x)=4x3(5sinx−3cosx)+(5cosx+3sinx)(x4)
⇒f′(x)=x3[4(5sinx−3cosx)+x(5cosx+3sinx)]
⇒f′(x)=x3(20sinx−12cosx+5xcosx+3xsinx)
⇒f′(x)=x3(5xcosx+3xsinx+20sinx−12cosx)