Find the derivative of xn+axn−1+a2xn−2+...+an−1x+an for some fixed real number a.
Here f(x) = xn+axn−1+a2xn−2+...+an−1x+an∴f′(x)=ddx[xn+ann−1+a2xn−2+...+xn−1+an]
= ddx(xn)+addx(xn−1)+a2ddx(xn−2)+...+an−1ddx(x)+ddx(an)
= nxn−1+a(n−1)xn−2+a2(x−2)xn−3+...+an−1+0
= nxn−1+a(n−1)xn−2+a2(n−2)xn−3+...+an−1