wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of y=cos1(1x21+x2).

Open in App
Solution

y=cos1(1x21+x2)

Putting x=tanθ

y=cos1(1tan2θ1+tan2θ)

y=cos1(cos2θ) [cos2θ=1tan2θ1+tan2θ]

y=2θ

Putting value of θ=tan1x.

y=2(tan1x) Since x=tanθ
θ=tan1x

Differentiating both sides w.r.t. x

dydx=d(2tan1x)dx

dydx=2tan1xdx

dydx=2(11+x2) [tan1x=11+x2]

dydx=21+x2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon