Find the derivative with respect to x of the function(logcosxsinx)(logsinxcosx)−1+sin−12x1+x2atx=π4
A
8(4π2+16−1log2).
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
8(4π2+16+1log2).
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−8(4π2+16−1log2).
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−8(4π2+16+1log2).
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A8(4π2+16−1log2). Let y=(logcosxsinx)(logsinxcosx)−1+sin−12x1+x2 =(logcosxsinx)2+2tan−1x[∵logba=1logab]=(logesinxlogecosx)2+2tan−1x. dydx=2(logsinxlogcosx)⋅cotx.logcosx+tanxlogsinx(logcosx)2+21+x2 Hence at x=π4. we have dydx=2.log(1/√2)log(1/√2)1.log(1/√2)+1.log(1/√2)[log(1/√2)]2+21+(π2/16)=−8log2+32π2+16