Let y=sin−12tanθ1+tan2θ
where x=tanθ
∴θ=tan−1x
y=sin−12tanθ1+tan2θ=sin−1sin2θ=2θ
y=2×tan−1x
differentiate with respect to x
dydx=2×ddxtan−1x
=21×11+x2
dydx=21+x2...(1)
let t=tan−1x
differentiate with respect to x
dtdx=ddxtan−1x
=11+x2...(2)
dydx=dydx×dxdt=21+x2×1+x21=2