Find the differential coefficient of sinx by first principle. Suppose that
f(x)=sinx
∴f(x+h)=sin(x+h)
∴f(x+h)−f(x)=sin(x+h)−sinx
⇒f(x+h)−f(x)h=sin(x+h)−sinxh
⇒limh→0f(x+h)−f(x)h=limh→0sin(x+h)−sinxh
⇒ddxf(x)=limh→0⎡⎢
⎢
⎢
⎢⎣2cos(x+h2).sinh2h⎤⎥
⎥
⎥
⎥⎦
⇒ddxsinx=limh→0cos(x+h2).limh→0⎛⎜
⎜
⎜⎝sinh2h2⎞⎟
⎟
⎟⎠
=cos(x+0).limh2→0⎛⎜
⎜
⎜⎝sinh2h2⎞⎟
⎟
⎟⎠∵h→0
∴h2→0
=cosx.1
⇒ddxsinx=cosx.