Find the differential equation associated with the primitive x2+y2+2ax+2by+c=0, where a,b,c are arbitrary constants.
A
d3ydx3[1+(dydx)2]=3dydx(d2ydx2)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
d3ydx3[1−(dydx)2]=3dydx(d2ydx2)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
d3ydx3[1+(dydx)2]=4dydx(d2ydx2)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
d3ydx3[1+(dydx)2]=2dydx(d2ydx2)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ad3ydx3[1+(dydx)2]=3dydx(d2ydx2)2 x2+y2+2ax+2by+c=0⋯(1) Differentiate w.r.t x 2(x+yy1)+2(a+by1)=0 or x+yy1+(a+by1)=0⋯(2) Again differentiate w.r.t. x 1+yy2+y21+by2=0⋯(3) Differentiate (3) w.r.t. x yy3+y1y2+2y1y1+by3=0⋯(4) Eliminating b between (3) and (4), we get 1+yy2+y21yy3+3y1y2=−by2−by3=y2y3
or y3(1+yy2+y21)=y2(yy3+3y1y2) Cancel the terms of yy2y3 ∴y3(1+y21)=3y1y22 ⇒d3ydx3[1+(dydx)2]=3dydx(d2ydx2)2