wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the differential equation associated with the primitive x2+y2+2ax+2by+c=0, where a,b,c are arbitrary constants.

A
d3ydx3[1+(dydx)2]=3dydx(d2ydx2)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
d3ydx3[1(dydx)2]=3dydx(d2ydx2)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
d3ydx3[1+(dydx)2]=4dydx(d2ydx2)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
d3ydx3[1+(dydx)2]=2dydx(d2ydx2)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A d3ydx3[1+(dydx)2]=3dydx(d2ydx2)2
x2+y2+2ax+2by+c=0(1)
Differentiate w.r.t x
2(x+yy1)+2(a+by1)=0
or x+yy1+(a+by1)=0(2)
Again
differentiate w.r.t. x
1+yy2+y21+by2=0(3)
Differentiate (3) w.r.t. x
yy3+y1y2+2y1y1+by3=0(4)
Eliminating b between (3) and (4), we get 1+yy2+y21yy3+3y1y2=by2by3=y2y3

or y3(1+yy2+y21)=y2(yy3+3y1y2)
Cancel the terms of yy2y3
y3(1+y21)=3y1y22
d3ydx3[1+(dydx)2]=3dydx(d2ydx2)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon