Find the differential equation corresponding to the family of curves y=k(x−k)2 where k is an arbitrary constant.
A
(dydx)3−4xydydx+8y2=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(dydx)3+4xydydx+8y2=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(dydx)3−2xydydx+8y2=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(dydx)3+2xydydx+8y2=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(dydx)3−4xydydx+8y2=0 Given y=k(x−k)2⋯(1) ∴y1=2k(x−k) or y21=4k2(x−k)2=4k2yk∴y214y=k. Putting the value of k in (2), we get y1=2.y214y[x−y214y]∴2y=y1x−y314y or 8y2−4xyy1−(y1)2=0 or (dydx)3−4xydydx+8y2=0 is the required equation.