Formation of a Differential Equation from a General Solution
Find the diff...
Question
Find the differential equation of family of parabolas with vertex at (h,0) and the principal axis along the x-axis.
Open in App
Solution
PS=√{α−(a+h)}2+β2 PM=∣∣
∣∣α+a−h√12+02∣∣
∣∣=|α+a−h| For parabola, PS=PM PS2=PM2 {α−(a+h)2}2+β2={α+(a−h)}2 α2+(a+h)2−2α(a+h)+β2=α2+(a−h)2+2α(a−h) α2+a2+h2+2ah−2αa−2αh+β2=α2+a2+h2−2ah+2αa−2αh 4ah−4aα+β2=0 On generalisation, 4ah−4ax+y2=0 y2=4a(x−h) ... (1) On differentiating, 2ydydx=4a(1−0) 2ydydx=4a....(2) Putting the value of 4a in equal (1), y2=2ydydx(x−h) dydx=y2(x−h).