(x−a)2+(y−b)2=r2 .....(1)
Since, r is a constant, we have two arbitrary constants a and b.
Differentiating (1) w.r.t x, we have
2(x−a)+2(y−b)dydx=0 .....(2)
Differentiating (2) w.r.t x, we have
1+(y−b)d2ydx2+(dydx)2=0
⇒(y−b)d2ydx2=−(1+(dydx)2) ........(3)
From eqn(2) we have (x−a)=−(y−b)dydx
Put this value in eqn(1) we have
(−(y−b)dydx)2+(y−b)2=r2
[(dydx)2+1](y−b)2=r2 ....(4)
Squaring (3) we have
(y−b)2(d2ydx2)2=[1+(dydx)2]2 ......(5)
Dividing eqn(4) by (5) we have
[(dydx)2+1](d2ydx2)2=r2[(dydx)2+1]2
⇒[1+(dydx)2]3=r2(d2ydx2)3 is the required differential equation.